分享到:

重庆古镇寻找保护与开发的“黄金分割点”

保护:$$    呼吁“栽树”意识$$    整整一下午,尽管阳光不错,可大昌古镇只有3名游客。大多数店面都深锁院门,只有高大、厚实又不失精致的封火墙,暗示着这处古镇曾经的繁荣———拥有1700多年历史,曾是陕西、湖南、四川等地商运的必经之地,素有“江南水乡”之称。$$    57岁的谭世文半眯着眼睛,躺在藤椅上。$$    谭世文在大昌古镇上开了一家古玩店,后厢房一大堆天南地北的假货古董,却鲜有人问津。此前,他在搬迁前的大昌古镇尚有4亩多良田。$$    “你也看见,来古镇旅游的人太少了,人气一落千丈。”谭世文摊开握惯锄头的双手,无奈地说,古镇入口50元的门票,把很多当地人挡在了古城之外。而且,古城内禁止留宿,所以一到夜晚,古镇就陷入一片死寂。$$    与云南丽江古城流光溢彩的夜生活相比,大昌古镇蒙上了一层令人难以理解的凄清。$$    尽管大昌古镇“活”得艰难,但重庆历史文化名城专委会主任何智亚却对此有不同看法:能够保留古...  (本文共3页) 阅读全文>>

权威出处: 重庆日报2010-04-15
《数学通报》2014年10期
数学通报

例谈在几何图形中构造黄金分割点

黄金分割非常有名,大家都很熟悉.如图1,P点在线段AB上,如果满足AP∶PB=PB∶AB(这个比值为槡5-12),则称P点为线段AB的一个黄金分割点.图1黄金分割点有着广泛的应用,讨论的文章很多,本文不去探讨,而在几何图形中如何构造黄金分割点的问题,这类文章并不多见.本文介绍黄金分割点在几何图形中的一些构造方法.1利用一个正方形如图2,ABCD为正方形,E为边BC的中点,以E为圆心,ED为半径画弧交BC的延长线于F,则C点为线段FB的黄金分割点.图2证明设正方形边长为1,则EF=FD=CD2槡+EC2=1+(12)槡2=槡52,CF=EF-EC=槡52-12=槡5-12,从而CFBC=槡5-12,即C点为线段FB的黄金分割点.2利用两个正方形如图3,两个正方形有一条公共边,以E为圆心EC为半径在正方形内作圆弧,连AE交圆弧于G,过G作AE的垂线(也是圆弧的切线)交DF于P,则P点是线段DF的黄金分割点.图3证明设正方形边长为1,...  (本文共5页) 阅读全文>>

《江西教育》2012年32期
江西教育

讲授的“黄金分割点”

我们都知道,教师最起码有“传道、授业、解惑”的责任,当教师与学生交流时,是需要教师讲的。然而,在课堂上究竟需要教师讲多少,可以占用多少时间,却很有讲究。在课程改革之前,教师是课堂的主宰,说得多,学生处于被动接受知识的地步,说得少,有些课堂甚至是教师的“一言堂”“满堂灌”。这样虽然能够破解难点,抓住重点,让学生迅速掌握”知识,但有一个致命的弊端,就是学生不知道怎样去学习了。时代进步了,教育的对象与环境都发生了很大的变化,不可能再一味地沿用以前的老方法,需要变化与革新了。然而,有的教师却从一个极端走向了另一个极端,为了避免遭批“满堂灌”,少讲甚至不讲,让学生自己思考、解读文本,对他们的回答也不置可否。这样显然也是不行的。在课堂上教师究竟应讲多少时间,有人试图从教学模式中寻找答案。杜郎口中学是“三三六”模式,即课堂自主学习的三大特点为:立体式、大容量、快节奏;自主学习三大模块为:预习、展示、反馈;课堂展示的六个环节为:预习交流、明确目...  (本文共1页) 阅读全文>>

《科普童话》2017年48期
科普童话

黄金分割点

伟大的数学王国由0-9、点、线、面组1.画图的应用成。你可别小瞧这些成员,他们让我们的画长方形是我们小学生最平常的事,生活奇妙无比,丰富多彩。例如这不起眼也是最熟悉不过的。你们可知道在无条件的点,它使我们的生活更美,更快捷。这个的情况下怎么把长方形画得更美,给人一功劳非黄金分割点莫属了。种更舒适的感觉?那就是长方形的宽与长把一条线段分成两部分,其中一段与的比值接近0.618,这样画出的图形更美。该线段的比等于另一条线段与第一条线段2.人体的应用的比,比值近似0.618,这就是黄金分割点。(1)在人体的结构上,黄金分割的应从古希腊以来,一直有人认为把黄金用更为广泛。举个最为熟悉的例...  (本文共1页) 阅读全文>>

《少先队小干部》2017年07期
少先队小干部

科学岛

晴朗的天空总是蔚蓝色的小朋友们,你可曾注意 -=一~■一^一^到:一场大雨过后,天空澄净得像平静的湖水;越是晴朗的天空,蓝得越澄澈。为什么天空是蓝色的?为了解答这个问题,我们不妨做一个小实验:用一只长方形玻璃缸,里面盛大约2/3的水,水里撒少许泥沙粉末,使溶液浑浊。然后把它放在窗前,选择一个晴朗的上午,大约七八点钟,阳光基本上平行地射向长方形玻璃缸的一端,光线通过浑浊的水,在另—端射出来。这时你可以发现一个很有趣的现象:长玻璃缸中的水呈现出淡蓝色,而从另一端射出来的光线却呈浅红色。玻璃缸中出现淡蓝色和蔚蓝色天空的道理是一样的。我们知道,地球表面包围着一层空气。空气中含有许多微小的尘埃、冰晶、水滴等。当太阳光通过空气时,就像在小实验中太阳光线穿过浮有泥沙的玻璃水缸一样,波长较长的红色光透射力最大,它能透过大气中的微粒射向地面;而波长较短的紫、蓝、靛等色光,很容易被悬浮在空间中的微粒“留住”,向四面八方散射开来,使天空变成了蔚蓝色...  (本文共2页) 阅读全文>>

《语数外学习(初中版)》2017年01期
语数外学习(初中版)

美的密码——0.618

在数学王国里,有一个“数”像诗一样美妙,它就是“美的密码”——姨5-12(准确值)或0.618(近似值).历史渊源两千多年前,古希腊的数学家欧克多索斯发现:将一条线段(AB)分割成大小两条线段(AP、PB),如图1,若小段PB与大段AP的长度之比等于大段AP与全段AB的长度之比,即PBAP=APAB,此时,线段AP叫做线段PB、AB的比例中项,则可得出这一比值为0.618…,这种分割称为黄金分割,点P叫做线段AB的黄金分割点.图1为什么人们会关注黄金分割呢?那是因为人们认为这个分割点是分割线段时最优美、最令人赏心悦目的点,同时,这个分割比(即0.618)被视为人类的美的密码,它在人们的日常生活中的应用非常广泛,下面举几个例子与同学们共赏.1.人体中“美的密码”意大利数学家菲波斯曾注意到数学界不屑一顾的“冷门”——人体的黄金分割,他发现一般人体肚脐上下的长度比值为0.618:1或者与此相近,这是人体上下结构的最优美数字。此外,他发...  (本文共2页) 阅读全文>>