分享到:

微分方程中的小波方法

自本世纪30年代以来,在物理、工程、化学、生物、经济等众多领域中产生的大量数学模型可以用带有极限环的平面自治系统来描述,极限环的问题已变得愈来愈重要,并引起了许多理论数学和应用数学工作者的注意。工程中的许多问题常常可归结于常微分方程的求解,由于自动控制理论的众多问题需要用微分方程来描述,这为小波方法的使用提供了可能,小波分析及其应用的日益活跃也引起了建筑工程及抗震设计等方面工程技术人员的关注,传统的各种分析与计算方法在具有其各自优点的同时,难免有其各自的缺点。本文对小波变换及小波理论进行研究的基础上,着重研究小波在微分方程中应用的一些基本问题和基本方法,主要提出并解决了如下的问题:1.提出了微分方程解的小波逼近的理论框架。对一类有紧支撑的正交小波的正则度进行了分析,同时对这类小波及相关尺度函数的正则性指数做出估计,提出了一种新的估计方法,得出了一个优于I.Daubechies的估计。在区间样条小波插值的最佳逼近性的基础上,对其误  (本文共92页) 本文目录 | 阅读全文>>

兰州大学
兰州大学

高精度小波数值方法及其在结构非线性分析中的应用

小波数值方法是近二十多年来发展起来的一类新兴数值方法。随着其自身的发展,小波数值方法的应用范围越来越广泛。而发展统一求解弱非线性和强非线性问题的小波方法这一重要课题也越来越受到重视。立足于小波封闭解法的基础之上,本文拓展了小波方法在具有非线性、奇异性及微分积分算子共存的复杂力学问题中的应用。另外,通过改进小波逼近方式和提出新的求解思路,本文针对一般非线性初值问题和边值问题分别提出了新的高精度小波算法。本文首先介绍了紧支正交的Coiflet小波函数基及其具有拟插值特性的小波逼近公式,它们是小波封闭解法的理论基础。接着介绍了构造有限区间上平方可积函数Coiflet小波逼近公式的边界延拓技术,它是小波数值方法的应用基础。数值研究表明消失矩数目为6的Coiflet是现有小波方法较好的基函数选择。在这些基础之上,本文通过将非线性项中的导数定义为新函数,拓展了现有小波方法在一维和二维拟线性微分方程中的应用,以及结合分部积分和函数变换等技术和...  (本文共145页) 本文目录 | 阅读全文>>

兰州大学
兰州大学

非线性问题统一求解的小波方法及其在大变形柔韧结构定量研究中的应用

非线性科学是20世纪开启并发展起来的最为重大的研究课题之一,现已成为众多基础研究与工程应用研究中的共性科学问题。虽然目前在诸多领域已定量揭示出大量非线性系统所具有的新现象和独有特征。但现有的众多非线性定量分析方法大部分只能直接用于研究弱非线性问题。而对于强非线性问题,这些方法均需根据单一问题的特性辅以特别的技巧才能适用,因而缺乏普适性。虽然结合数值追踪技术后具有一定普适性,但其累计误差会导致解失真,尤其是对于初值敏感的非线性系统这一问题将尤为突出。因此,针对非线性问题尤其是强非线性问题的定量分析技术已成为当前非线性科学研究中的棘手问题。本博士学位论文针对这一问题,在本研究小组原有求解非线性问题的基本小波算法之上,将强弱非线性问题的求解统一起来,形成一套可统一求解一般强弱非线性问题的普适方法。并通过理论推导和数值分析研究了这一方法的求解精度和收敛速度等特性,给出了应用力学和物理领域中若干强弱非线性问题的高精度定量结果。首先,本文从...  (本文共186页) 本文目录 | 阅读全文>>

中国农业大学
中国农业大学

小波随机有限元方法研究

本研究将小波分析方法和随机有限元方法相结合发展了一种用于分析细沟侵蚀模型随机特性的小波随机有限元方法;在时域积分中采用了“精细积分方法”。该工作主要由以下五部分构成:第一、研究了拟Shannon小波的性质,构造了求解偏微分方程的拟Shannon小波配置法,同时将外推法引入小波配置法,进一步改善了该方法的计算效率和计算精度。在此基础上,根据区间插值小波的概念,构造了拟Shannon区间小波配置法,数值算例表明该方法不但可以消除边界效应,而且可大幅度提高计算精度。第二、在钟万勰院士提出的“精细积分法”的基础上提出了求解非线性结构动力方程的自适应精细积分法。该方法将外推法引入求解结构动力方程的精细时程积分法中,从而使该方法在求解非线性动力方程中可以自适应选取时间步长;需要指出的是,由于考虑了矩阵指数精细算法和外推法算法在时间离散方法上的一致性,在外推过程中,计算工作量基本没有增加;因此,两种方法的结合有效提高了算法的效率和精度。第三、...  (本文共105页) 本文目录 | 阅读全文>>

暨南大学
暨南大学

小波精细积分法在偏微分方程求解中的研究

本论文的研究目的是将小波分析方法和精细积分法相结合发展一种用于分析具有分形边界条件的扩散方程新方法;在空间上用拟Shannon区间小波配置法,边界处则结合伪域法解决区域的不规则问题;在时域积分上采用了“精细积分方法”。本工作由以下几个部分构成:第一、根据小波的特性,在拟Shannon小波基础上构造了拟Shannon区间小波和拟Shannon区间小波配置法。通过比较了拟Shannon小波和拟Shannon区间小波这两者在数值逼近上的各自特点得出后者不但有效消除边界效应,而且可以大幅度提高计算精度。因此该方法在解决不规则区域的偏微分方程上有显著优点。第二、在钟万勰院士提出的“精细积分法”的基础上提出了求解非线性结构动力方程的自适应精细积分法。该方法将外推法引入求解结构动力方程的精细时程积分法中,从而使该方法在求解非线性动力方程中可以自适应选取时间步长;在外推过程中,计算工作量基本没有增加;因此,两种方法的结合有效提高了算法的效率和精...  (本文共72页) 本文目录 | 阅读全文>>

兰州大学
兰州大学

梁板结构等非线性问题的小波封闭解法

自然科学和工程技术中的许多非线性问题都可以用非线性微分方程这一基本的数学模型来表征,因而非线性微分方程的求解技术是研究非线性科学过程中不可回避的一个环节。虽然自非线性科学诞生伊始,各种的求解方法,包括解析方法和数值方法就被源源不断的开发出来,但现有方法在处理非线性微分方程,尤其是定量求解强非线性问题时仍然存在着诸多的不足。一个重要的原因就是这些方法无法将方程中非线性项的低阶与高阶信息解耦,从而导致舍去的解的高阶项对低阶近似解的求解产生了很大的影响,即低阶近似解依赖于舍去的高阶项。因而随着非线性效应的增强,解的精度将会显著的下降甚至出现解不收敛等问题。因此如何获得强非线性系统的高精度近似解已成为非线性科学研究中的一个至关重要的课题。小波分析是数学的一个新的分支,在时域与频域空间均具有强大的局部识别能力,目前在许多领域如图像处理,故障诊断及方程的数值求解中已展示出强大的优越性与生命力。具体到微分方程的数值求解领域,基于多分辨分析的小...  (本文共132页) 本文目录 | 阅读全文>>